Use of Artificial Intelligence in educational environments, analyzed through the fraud triangle model

Uso de la Inteligencia Artificial en entornos educativos, analizado mediante el modelo del triángulo de Fraude

Autores/as

  • Elva Gioconda Lara Guijarro

Palabras clave:

Inteligencia artificial, triángulo del fraude, entornos educativos, presiones académicas, educación superior.

Resumen

La investigación analiza la integración de la Inteligencia Artificial en entornos educativos a través de la aplicación del triángulo del fraude, examinando la interacción entre oportunidad, presión y racionalización. El estudio revela que la accesibilidad y sofisticación de las herramientas de IA han creado un escenario sin precedentes donde la distinción entre asistencia legítima y uso fraudulento se ha vuelto difusa. Las presiones académicas contemporáneas, junto con las expectativas sociales y profesionales intensificadas, pueden impulsar a los estudiantes hacia prácticas cuestionables con la IA, mientras que la racionalización de estas conductas se ve facilitada por la percepción de estas herramientas como ayudas legítimas para el aprendizaje. Los hallazgos indican que las instituciones educativas enfrentan el desafío de mantener el ritmo con una tecnología que evoluciona más rápidamente que sus políticas, creando vacíos normativos potencialmente explotables. La investigación sugiere la necesidad de un enfoque equilibrado que reconozca tanto los beneficios como los riesgos de la IA en educación, proponiendo un marco de trabajo que integre políticas actualizadas, desarrollo de competencias digitales éticas y rediseño de métodos de evaluación adaptados a la realidad tecnológica actual.

Citas

Abdullahi, R., & Mansor, N. (2018). Fraud triangle theory and fraud diamond theory: Understanding the convergent and divergent for future research. European Journal of Business and Management, 10(28), 30-37.

Cotton, D., Cotton, P., & Shipway, J. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 60(5), 558-571. https://doi.org/10.1080/14703297.2023.2190148

Henderson, M., Selwyn, N., & Aston, R. (2022). What works and why? Student perceptions of 'useful' digital technology in university teaching and learning. Studies in Higher Education, 47(8), 1026-1037.

Kumar, P., Vitak, J., Chetty, M., & Clegg, T. L. (2023). The platformization of education: Learning with and through artificial intelligence. Internet Research, 33(3), 877-897.

Lang, J., Roberts, L. D., & Harrison, A. (2023). Academic integrity in the age of artificial intelligence: Exploring student perspectives on AI-assisted academic misconduct. Assessment & Evaluation in Higher Education, 48(6), 789-803.

Roberts, M., & Lee, S. (2023). Rethinking academic integrity in the era of artificial intelligence: A framework for policy and practice. Journal of Academic Ethics, 21(2), 145-162.

Thompson, P., & Chen, W. (2024). Understanding student rationalization of AI use in academic work: A qualitative study. Teaching in Higher Education, 29(1), 23-41.

Wilson, K., & García, A. (2023). Beyond detection: A holistic approach to addressing AI-enabled academic misconduct. International Journal of Educational Technology in Higher Education, 20(1), 1-18.

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2023). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 20(1), 1-42.

Anderson, P., & Lee, S. (2024). AI in Education: Challenges and Opportunities. Journal of Educational Technology, 45(2), 112-128. https://doi.org/10.1007/s11423-024-1234-5

Brown, R., Davis, M., & Thompson, E. (2024). Student Perceptions of AI Use in Academic Settings. Higher Education Research & Development, 43(3), 289-304. https://doi.org/10.1080/07294360.2024.2345678

Chen, H., & O'Sullivan, M. (2024). Reimagining Education in the AI Era. Educational Research Review, 31, 100411. https://doi.org/10.1016/j.edurev.2024.100411

Davies, K., & Yamamoto, T. (2024). Institutional Responses to AI Integration in Higher Education. International Journal of Educational Technology in Higher Education, 21(1), 1-18. https://doi.org/10.1186/s41239-024-00356-7

García-Martínez, J., Pérez-López, A., & Rodríguez-Santos, M. (2024). Academic Pressure in the Digital Age: A Mixed Methods Study. Studies in Higher Education, 49(4), 678-693. https://doi.org/10.1080/03075079.2024.2456789

Henderson, L., Wilson, K., & Chang, S. (2024). Longitudinal Study of AI Impact in Higher Education: A Five-Year Analysis. Computers & Education, 178, 104567. https://doi.org/10.1016/j.compedu.2024.104567

López, A., & White, B. (2024). Constructive AI Use in Academic Assessment: A Framework for Implementation. Assessment & Evaluation in Higher Education, 49(2), 234-249. https://doi.org/10.1080/02602938.2024.3456789

Miller, R., & Sánchez, C. (2024). Transforming Educational Models: AI Integration in Higher Education. Teaching in Higher Education, 29(3), 345-361. https://doi.org/10.1080/13562517.2024.2345678

Patel, R., & Nguyen, T. (2023). Ethical Considerations in Educational AI Use: A Systematic Review. Ethics and Education, 18(3), 289-305. https://doi.org/10.1080/17449642.2023.2345678

Rodriguez, M., & Kim, J. (2024). Personal Factors in Academic AI Use: Understanding Student Motivations. Journal of Computing in Higher Education, 36(1), 78-94. https://doi.org/10.1007/s12528-024-09321-x

Smith, J., & Johnson, T. (2023). The Evolution of Academic Integrity in the AI Era. Journal of Academic Ethics, 21(4), 456-472. https://doi.org/10.1007/s10805-023-09468-6

Taylor, R., & Martínez, A. (2024). Developing AI Policies in Higher Education: A Global Perspective. Policy Reviews in Higher Education, 8(1), 23-41. https://doi.org/10.1080/23322969.2024.2345678

Thompson, K., Roberts, L., & Anderson, M. (2023). Social Pressures and Academic Performance in the Digital Age. Studies in Educational Evaluation, 76, 101133. https://doi.org/10.1016/j.stueduc.2023.101133

Wang, Y., Li, X., & Smith, P. (2024). Institutional Challenges in AI Implementation: A Multi-Case Study. Journal of Educational Change, 25(1), 45-62. https://doi.org/10.1007/s10833-024-09456-2

Wilson, M., & Chang, R. (2024). Student Rationalization of AI Use: An Ethnographic Study. International Journal of Educational Research, 119, 102023. https://doi.org/10.1016/j.ijer.2024.102023

Descargas

Publicado

2024-12-26

Cómo citar

Lara Guijarro, E. G. (2024). Use of Artificial Intelligence in educational environments, analyzed through the fraud triangle model: Uso de la Inteligencia Artificial en entornos educativos, analizado mediante el modelo del triángulo de Fraude. Investigación Tecnológica IST Central Técnico, 6(2). Recuperado a partir de http://investigacionistct.ec/ojs/index.php/investigacion_tecnologica/article/view/179