Detection and classification of moving objects in closed spaces using artificial vision algorithms

Authors

  • Stalin Marcelo Hidrobo Proaño Universitat Politècnica de València

DOI:

https://doi.org/10.70998/itistct.v2i2.82

Keywords:

computer vision, OpenCV, image processing, pets, object detection

Abstract

The field of computer-assisted vision has expanded over the years, awakening great interest in its study and research development in different disciplines to achieve the highest performance of the applications developed with these methods.

This article summarizes the scope of a larger investigation, presented as a Master's Final Project carried out by the same author at the Universitat Politècnica de València (Hidrobo, 2018) in which some of the main techniques of computer vision video surveillance and its behavior when the guarded covered environment is permanently inhabited by a pet. In this way, with the review of different alternatives, a difference is made between an alert generated by its movement and one generated by an intruder, preventing the alarms from being triggered unwantedly.

For this purpose, two video resources were used: 1) the OpenCV computer vision library in a C # environment in order to be able to repeat the experiments in the same circumstances for the different algorithms to be evaluated and, 2) different videos that register animals and people, simulating the environment to be monitored.

The objective of this work was to develop a test bench that allows detecting and classifying a moving object inside a closed environment through the use of image processing and classification algorithms.

At the end of the experiments, the data obtained were arranged in tables that show the results when executing different video sequences on the test bench, using all the image processing and classification methods developed.

References

Akgul, A. Y. (2010). A Fast Method for Tracking People. Trends and Topics in Computer Vision , 143-152.

Bretzner, L., & Lindeberg, T. (1998). Feature Tracking With Automatic Selection of Spatial Scales. Computer Vision and Imaging Understanding, 71, 385 392.

De la Escalera Hueso, A. (2001). En Visión por Computador Fundamentos y Métodos (págs. 12,13,14,15,16,17,18,19,20,21,22). Madrid: PEARSON EDUCACIÓN, S.A.

Dhivya, S., Sangeetha, J., & Sudhakar, B. (2020). Copy-move forgery detection using SURF feature extraction and SVM supervised learning technique. Soft Computing, 14429-14440.

González Jiménez, J. (2000). En Visión por Computador (págs. 1,11,49). Madrid: Paraninfo.

Guo, T., Xu, Z., Yao, X., Chen, H., Aberer, K., & Funaya, K. (2016). Robust online time series prediction with recurrent neural networks. Proceedings - 3rd IEEE International Conference on Data Science and Advanced Analytics, DSAA, 816-825.

Hidrobo, S. M. (2018). Detección y Clasificación de objetos en movimiento en espacios cerrados utilizando algoritmos de visión artificial. Valencia: Universitat Politècnica de València.

Hornberg, A. (2006). En Handbook of Machine Vision (págs. 88-101, 362-365, 373-379). Ladenburg: Steingraeber Satztechnik GmbH.

Huamán, A. (17 de 07 de 2018). The OpenCV Tutorials, Release 2.4.13.7. Recuperado el 17 de 07 de 2020, de https://docs.opencv.org/2.4/opencv_tutorials.pdf

Kaehler, A., & Bradski, G. (2008). En Learning openCV computer Vision with the openCV Library (págs. 1-4). United States of América: O'REILLY.

Khai, T., Ioannis A, K., & Shishir, K. S. (30 de 06 de 2010). Fusion of Human Posture Features. Trends and Topics in Computer Vision, 258-272. Recuperado el 31 de 07 de 2018, de https://stackoverflow.com/questions/28954928/point-cloud-cluster-blob-detection

Mayo, J. (2002). En C# Al descubierto (págs. Introducción,4,8,9). Madrid: PEARSON EDUCATION, S.A.

Microsoft. (2020). Tutoriales de Visual Studio C#. Recuperado el 14 de 07 de 2020, de https://docs.microsoft.com/es-es/visualstudio/get-started/csharp/?view=vs-2019

Pajares Martinsanz, G., & de la Cruz García, J. (2007). En VISIÓN POR COMPUTADOR Imágenes digitales y aplicaciones (págs. 146,147,245-254, 338,358,359). Madrid: Ra-Ma.

Rapantzikos, K., Avrithis, Y., & Kollias, S. (2010). Detecting regions from single scale edges. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 298-311.

Rodríguez Morales, R., & Sossa Azuela, J. H. (2011). En Procesamiento y Análisis Digital de IMÁGENES (págs. 155,156,195). Madrid: Ra-Ma.

Ruanpeng, C., Auephanwiriyakul, S., & Theera, N. (2017). Human and dog movement recognition using fuzzy inference system with automatically generated membership functions. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1-6.

Wang, D., Zeng, S., Xu, C., Qiu, W., Liang, Y., Joshi, T., & Xu, D. (2017). MusiteDeep: A deep-learning framework for general and kinase-specific phosphorylation site prediction. Bioinformatics, 3909-3916.

Wong, C. E., & Ong, T. J. (2009). A New RMI Framwork for Outdoor Objects Recognition. 2009 International Conference on Advanced Computer Control, 555.

Published

2020-12-21 — Updated on 2020-12-21

How to Cite

Hidrobo Proaño, S. M. (2020). Detection and classification of moving objects in closed spaces using artificial vision algorithms. Investigación Tecnológica IST Central Técnico, 2(2). https://doi.org/10.70998/itistct.v2i2.82

Most read articles by the same author(s)